1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
| #include <bits/stdc++.h> using namespace std; #define pb push_back #define mp make_pair #define F first #define S second typedef long long LL; typedef pair<int, int> pii; const int N = 153; const double PI = acos(-1.0); double D[80][80][80]; namespace FFT { static const int W = 1 << 22; static const double PI = acos(-1.0); struct Complex { double x, y; Complex(double _x = 0, double _y = 0) : x(_x), y(_y) {} Complex operator + (const Complex &t) const {return Complex(x + t.x, y + t.y);} Complex& operator += (const Complex &t) {x += t.x, y += t.y;return *this;} Complex operator - (const Complex &t) const {return Complex(x-t.x,y-t.y);} Complex& operator -= (const Complex &t) {x -= t.x, y -= t.y;return *this;} Complex operator * (const Complex &t) const {return Complex(x * t.x - y * t.y, x * t.y + y * t.x);} Complex operator / (const double &t) const {return Complex(x / t,y / t);} Complex& operator /= (const double &t) {x /= t, y /= t;return *this;} double real() {return x;} double imag() {return y;} }; void fft(Complex a[], int n, int rev) { for (int i = 1, j = 0, k; i < n; ++i) { for (k = n >> 1; k > (j ^= k); k >>= 1); if (i < j) swap(a[i], a[j]); } for (int s = 1, ss = 2; s < n; s <<= 1,ss <<= 1) { Complex wn(cos(2 * PI * rev / ss), sin(2 * PI * rev / ss)), w; for (int i = 0, j ; i < n; i += ss) { for (j = i, w = 1; j < i + s; ++j, w = w * wn) { Complex t = w * a[j + s]; a[j + s] = a[j] - t; a[j] = a[j] + t; } } } if (rev == -1) for (int i = 0; i < n; ++i) a[i] /= n; } } FFT::Complex A[FFT::W], B[FFT::W]; inline double sqrr(double x) { return x * x * x * x; } int main() { int n, q; scanf("%d%d", &n, &q); for (int i = 1, x, y, z; i <= n; ++i) { scanf("%d%d%d", &x, &y, &z); --x, --y, --z; int t1 = N * N * x + N * y + z, t2 = N * N * (76 - x) + N * (76 - y) + (76 - z); A[t1].x += 1, B[t2].x += 1; } for (int i = 0; i <= 77; ++i) for (int j = 0; j <= 77; ++j) for (int k = 0; k <= 77; ++k) D[i][j][k] = sqrt(sqrr(i) + sqrr(j) + sqrr(k)); FFT::fft(A, FFT::W, 1); FFT::fft(B, FFT::W, 1); for (int i = 0; i < FFT::W; ++i) A[i] = A[i] * B[i]; FFT::fft(A, FFT::W, -1); while (q--) { double ans = 0; int a, b, c, d; scanf("%d%d%d%d", &a, &b, &c, &d); for (int i = 0; i < FFT::W; ++i) { int cnt = int(A[i].real() + 0.5); if (!cnt) continue; int x = i / (N * N) - 76, y = i / N % N - 76, z = i % N - 76; if (!x && !y && !z) continue; ans += fabs(a * x + b * y + c * z + d) * cnt / D[abs(x)][abs(y)][abs(z)]; } ans /= n, ans /= n - 1; printf("%.10lf\n", ans); } return 0; }
|